
Reinventing Data Import

07/17/2023

DATABOLT



JAMES DORNAN
PROFESSIONAL BACKGROUND
● CHANGED CAREERS FROM BANKING TO COMPUTERS AT 21
● EARLY INNOVATIONS

○ Automation assisted data entry
○ Unattended database health alert system
○ National print & document archive system for Cigna
○ Business/Personal ISDN & modem ISP and hosting service

● MAJOR PROJECTS
○ Developed a web application and database to manage and 

display the entire company's organizational hierarchy, 
tracking employees, locations, and critical details from hire 
to termination.

○ Created an eBay-style auction portal for a Fortune 500 
company, enabling branch managers to auction rental 
equipment, tracking profits and generating an estimated 
$100 million annually

2

About Me



Access control systems are not geared specifically for large schools. Maybe large 

campuses, but not schools.

Schools handle students far different than businesses handle employees, and 

students absolutely expect everything to move at TikTok speeds.

Schools are like businesses, except…

● They hire almost everyone in September and terminate them in June.

● Most employees’ contracts gets extended each semester.

● A large population of employees live at work.

● Employees have unrealistic expectations.

● Those same employees are also the customers and pays to work there.

3

Universities Are Just Like Businesses



Updates to OnGuard records should be as fast as renting a car/time 

machine.

4

Rental Car Standard



5

How We Get Updates at Stanford

1. Connect to central data warehouse using Weblogic JMS client.
2. Receive JMS messages containing RefIDs that have been updated.
3. Download XML documents using RefIds one at a time.
4. Parse and process each XML document.
5. Modify data as required to conform with the card systems.
6. Send to receiving systems, like OnGuard. 



6

Harvester System

Using a simple import program that just passes data into OnGuard.

● Data is updated even if no data has changed.
● Resource intensive, memory, CPU, network.
● Potential trigger activation  when no action is actually required.
● Audit logs might not reflect actual updates.
● Excessive writes to storage media.
● Sequential record processing.
● 3-20 seconds per record, with average around 4.7 seconds.
● Slower when the system is under heavy load.
● Occasional failure of OnGuard or WMI.
● 10,000 records takes 13-17 hours to process.



7

Improved Harvester

Our improved system was much better.

● Hashing incoming data removed duplicate updates.
● Incoming data compared to existing records before updating.
● Only fields that change are updated.
● Sequential record processing.
● Slow. 2-5 seconds per record, with average around 2.5 seconds.
● Custom processing.
● Slower when system under heavy load.
● 10,000 records takes 7-10 hours.



8

Faster Meant Fewer Features

When adding features to processing incoming records the processing 
slowed down.

A  modest increase in processing time, but anything multiplied by 10,000 
was a long delay in our nano-second universe.



9

Speed And Features

Ultimately we’d taken things as far as they could go. We needed the ability add 
better processing of the XML records, add more features, and satisfy our 
customers. However, we’d almost need a time machine to do that.



10

A Different Approach

We were at the point of diminishing returns, and the current XML parser was 
not exactly doing what we wanted.



11

Databolt is an advanced, containerized system designed for the efficient 
download, import, and processing of incoming and updating records for staff, 
students, and other person records. This Docker-based service comprises multiple 
containers, each handling specific tasks to ensure seamless integration with 
OnGuard, CS Gold, and Atrium.

● Containerized for portability and isolation.
● Multiprocess to leverage different languages and resources.
● Docker Compose Service to create a single service.
● Multithreaded for parallel processing.

Design



12

In The Past

We processed incoming records one at a time, each record waiting until the 
last completed before being processed.



13

The Future Is Now

We will process records in parallel (threading). Since there is time spent waiting on 
outside resources, database, OnGuard, and HTTP the burden to the server is 
exceedingly low. Rather than waiting in line we’re just going to process as many 
records at once as we can without breaking systems.



14

Docker Compose Service

With Docker Compose a series 
of Docker containers can be 
used as a single service. They 
can all be started or stop at 
once, act as a single unit, and 
communicate freely with each 
other while completely 
firewalled off from the rest of 
the world.



15

Databolt Containers

● Receiver, a Java based program running every 3 minutes that downloads a 
list of RefIds form our data warehouse, MAIS, and passes them to the 
Ingress container.

● Ingress, a Golang microservice that acts as a simple gateway to get 
information into and out of the Databolt set of containers. Incoming 
requests (commands) are passed to the Bolt listener thread.

● Bolt, a PHP 8.3 service that hosts a framework for splitting complex 
programs into multiple threads to allow for parallel processing.

● Redis, this is an in-memory database that is also written to disk. It is as fast 
as computer memory while also backed up to disk.

● Gold, this container reads record ment for CS Gold and writes them out to 
the CS Gold import folder where they are picked up.

● Atrium, same as CS Gold, but with a different file configuration, folder, and 
size limitation.

The totals size of these containers are about 224MB on disk and the Databolt 
service can use as much as 900BG of RAM under a heavy load. This is very light on 
resources.



16

Receiver

The Receiver is a simple Java JMS program that downloads messages that 
container the RefIds of records that have been updated.

It replaces nearly 30,000 lines of code that had change maintainers over the 
years and had become hard to understand with less than 500 lines of ease to 
maintain Java code.

● Runs every 3 minutes.
● Connects to MAIS.
● Downloads Refids.
● Checks for duplicates.
● Uses HTTP to pass them to the Ingress container.



17

Ingress

The Ingress container is a simple web server that takes requests in the form of a 
URL and is only accessible from the local machine. Each URL issues a different 
command to the Bolt service container. The only command supported at this 
time is “maisimport”. The URL is http://ingress/import/person/<RefId>

● Listens for HTTP requests.
● Passes the command to the Bolt container.
● Uses a simple in-memory message queue.
● If a reply is requested, it waits for the reply.



18

Redis

Redis is used to create a high-performance repository for data that can be 
shared between all processes. The data is stored on disk in the event that the 
machine should crash or the service should failure. In the event of a failure it will 
allow processing to resume from where it left off. 

● Stores persistent data.
● High speed.
● Widely supported.
● Stable.



19

CS Gold & Atrium

Both of these containers are identical in their function. They read data intended 
for their respective system, generated by the Bolt container, from Redis and 
output into a designated import folder shared from the destination system. 

● Runs every 5 minutes.
● Reads data from a Redis queue.
● Outputs to a file in a specific folder.



20

Bolt

The Bolt container runs a PHP 8.3 service that listens for incoming “command” 
requests and then places them into a Redis queue. A command is divided into 
tasks based on events. The default event is “Start”. Each task is run in a different 
thread.

● Configurable number of threads (default 100).
● Saves state at each stage of processing to resume after stopping.
● Highly optimized code.



21

Command Class

Command classes are named after the command that is sent to Databolt. At the 
moment the only command class is ‘maisimport’. Command classes controls 
which tasks are run in response to incoming events. They control the workflow for 
any given command.

If an event triggers a new task 
the data output from the last 
task is passed to the new one, 
allowing each task to 
contribute to the data 
accessible to downstream 
tasks, global data for all 
related tasks.



22

Tasks

Tasks are executed in 
● Extensible workflow.
● Modular design.
● Up to 100 total task may run at once.
● Focused on doing only one thing.
● Reuses threads speeding up start time.
● Generates events when done and passes data to next task.



23

Features Of Doing 100 Things At Once

● High Throughput: Capable of processing up to 500-1,000 records per minute, 
Databolt ensures timely updates and data synchronization.

● Resource Efficient: Designed to run on minimal resources (1 CPU, 4MB RAM, 
204MB storage), making it cost-effective and easy to deploy.

● Event-Driven Architecture: Automatically triggers various task processes as 
needed, enhancing responsiveness and efficiency.

● Programmable Workflow: Utilizes flexible “Command” classes to tailor 
workflows to specific needs and scenarios.

● Parallel Processing: Supports up to 100 threads, enabling concurrent task 
execution and reducing processing time.

● Stateful Recovery: Ensures continuity by resuming operations immediately 
after a system failure, minimizing downtime.

● Containerized Service: Built as a Docker service with multiple containers, 
Databolt provides isolation, scalability, and ease of deployment.



24

Benefits Of Doing 100 Things At Once

● Scalability: Easily handles large volumes of data, perfect for institutions 
with growing records.

● Accuracy: Reduces errors through automated processes and real-time 
updates.

● Cost Savings: Operates on low resources, reducing infrastructure costs.
● Reliability: Robust architecture ensures data integrity and availability even 

in case of failures.
● Ease of Deployment: Docker-based architecture simplifies deployment and 

management, allowing quick setup and consistent environments.
● Extensibility: Easily extended to incorporate additional functionalities or 

integrate with other systems as needs evolve. We can add almost anything 
Krystal wants.



25

Review

Using a multi-threaded approach we are able to download, process, and update 
records at a rate of 8.33-16.66 records per seconds rather than 2.5-7 seconds per 
record under the old system. This is an increase of 21 times the previous speed.

10,000 records will now download, process, and update in 10-20 minutes.
500-1,000 per minute.

With the processing of records no longer directly impacting the processing of 
other records we can add more complex or specialized transformations to the 
data.

The modularity of the design allows interfacing with other systems without any 
impact to existing code.



26

Future

● Move to OpenAccess
● Write logs to Redis in memory and have a logging process write to disk.
● Create RactJS Web UI to monitor and control.
● Have Receiver write directly to Redis queue.
● Experiment with increasing overall Tasks to 150 at a time.
● Everything Jay wants. All hail Jay.
● Everything Krystal wants. All hail Krystal.



27

Geek Stuff - Docker Container Sizes

Docker Image Size

Atrium Import 101KB

Gold Import 101KB

Redis 827KB

Ingress 8.31MB

Receiver 76.4MB

Bolt 135MB

Total 220.74MB

These are the sizes of the containers. I attempted to get them as small as 
reasonably possible.



28

Geek Stuff - Technology

● Docker, docker 
compose

● PHP 8.3
● PHP Parallel
● ZMQ
● Golang
● Java
● Weblogic
● Redis
● C++
● Alpine Linux


